Protein arginine N-methyltransferase 5 - O14744 (ANM5_HUMAN)


Protein Feature View of PDB entries mapped to a UniProtKB sequence  

Arginine methyltransferase that can both catalyze the formation of omega-N monomethylarginine (MMA) and symmetrical dimethylarginine (sDMA), with a preference for the formation of MMA (PubMed:10531356, PubMed:11152681, PubMed:11747828, PubMed:12411503, PubMed:15737618, PubMed:17709427, PubMed:20159986, PubMed:20810653, PubMed:21258366, PubMed:21917714, PubMed:22269951, PubMed:21081503). Specifically mediates the symmetrical dimethylation of arginine residues in the small nuclear ribonucleoproteins Sm D1 (SNRPD1) and Sm D3 (SNRPD3); such methylation being required for the assembly and biogenesis of snRNP core particles (PubMed:12411503, PubMed:11747828, PubMed:17709427). Methylates SUPT5H and may regulate its transcriptional elongation properties (PubMed:12718890). Mono- and dimethylates arginine residues of myelin basic protein (MBP) in vitro. May play a role in cytokine-activated transduction pathways. Negatively regulates cyclin E1 promoter activity and cellular proliferation. Methylates histone H2A and H4 'Arg-3' during germ cell development. Methylates histone H3 'Arg-8', which may repress transcription. Methylates the Piwi proteins (PIWIL1, PIWIL2 and PIWIL4), methylation of Piwi proteins being required for the interaction with Tudor domain-containing proteins and subsequent localization to the meiotic nuage (By similarity). Methylates RPS10. Attenuates EGF signaling through the MAPK1/MAPK3 pathway acting at 2 levels. First, monomethylates EGFR; this enhances EGFR 'Tyr-1197' phosphorylation and PTPN6 recruitment, eventually leading to reduced SOS1 phosphorylation (PubMed:21917714, PubMed:21258366). Second, methylates RAF1 and probably BRAF, hence destabilizing these 2 signaling proteins and reducing their catalytic activity (PubMed:21917714). Required for induction of E-selectin and VCAM-1, on the endothelial cells surface at sites of inflammation. Methylates HOXA9 (PubMed:22269951). Methylates and regulates SRGAP2 which is involved in cell migration and differentiation (PubMed:20810653). Acts as a transcriptional corepressor in CRY1-mediated repression of the core circadian component PER1 by regulating the H4R3 dimethylation at the PER1 promoter (By similarity). Methylates GM130/GOLGA2, regulating Golgi ribbon formation (PubMed:20421892). Methylates H4R3 in genes involved in glioblastomagenesis in a CHTOP- and/or TET1-dependent manner (PubMed:25284789). Symmetrically methylates POLR2A, a modification that allows the recruitment to POLR2A of proteins including SMN1/SMN2 and SETX. This is required for resolving RNA-DNA hybrids created by RNA polymerase II, that form R-loop in transcription terminal regions, an important step in proper transcription termination (PubMed:26700805). Along with LYAR, binds the promoter of gamma-globin HBG1/HBG2 and represses its expression (PubMed:25092918). Symmetrically methylates NCL (PubMed:21081503). Methylates TP53; methylation might possibly affect TP53 target gene specificity (PubMed:19011621). Involved in spliceosome maturation and mRNA splicing in prophase I spermatocytes through the catalysis of the symmetrical arginine dimethylation of SNRPB (small nuclear ribonucleoprotein-associated protein) and the interaction with tudor domain-containing protein TDRD6 (By similarity). UniProt
Catalytic Activity
L-arginyl-[protein] + 2 S-adenosyl-L-methionine = 2 H+ + Nomega,Nomega'-dimethyl-L-arginyl-[protein] + 2 S-adenosyl-L-homocysteine UniProt
Pathway Maps
      ESCHER  BiGG
Subunit Structure
Forms, at least, homodimers and homotetramers (PubMed:11152681). Component of the methylosome complex, composed of PRMT5, WDR77 and CLNS1A (PubMed:21081503). Found in a complex composed of PRMT5, WDR77 and RIOK1 (PubMed:21081503). RIOK1 and CLNS1A associate with PRMT5 in a mutually exclusive fashion, which allows the recruitment of distinct methylation substrates, such as nucleolin/NCL and Sm proteins, respectively (PubMed:21081503). Interacts with PRDM1 (By similarity). Identified in a complex composed of methylosome and PRMT1 and ERH (PubMed:25284789). Interacts with EGFR; methylates EGFR and stimulates EGFR-mediated ERK activation. Interacts with HOXA9. Interacts with SRGAP2. Found in a complex with COPRS, RUNX1 and CBFB. Interacts with CHTOP; the interaction symmetrically methylates CHTOP, but seems to require the presence of PRMT1 (PubMed:25284789). Interacts with EPB41L3; this modulates methylation of target proteins. Component of a high molecular weight E2F-pocket protein complex, CERC (cyclin E1 repressor complex). Associates with SWI/SNF remodeling complexes containing SMARCA2 and SMARCA4. Interacts with JAK2, SSTR1, SUPT5H, BRAF and with active RAF1. Interacts with LSM11, PRMT7 and SNRPD3 (PubMed:17709427, PubMed:16087681). Interacts with COPRS; promoting its recruitment on histone H4. Interacts with CLNS1A/pICln (PubMed:21081503, PubMed:9556550). Identified in a complex with CLNS1A/pICln and Sm proteins. Interacts with RPS10 (PubMed:20159986). Interacts with WDR77. Interacts with IWS1. Interacts with CRY1. Interacts with POLR2A (PubMed:26700805). Interacts with SMN1/SMN2 (PubMed:26700805). Interacts with LYAR; this interaction is direct (PubMed:25092918). Interacts with STRAP (PubMed:19011621). Interacts with TP53 in response to DNA damage; the interaction is STRAP dependent (PubMed:19011621). Interacts with TDRD6 (By similarity). UniProt
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from the SWISS-MODEL Repository  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.