Glucocorticoid receptor - P04150 (GCR_HUMAN)


Protein Feature View of PDB entries mapped to a UniProtKB sequence  

Receptor for glucocorticoids (GC) (PubMed:27120390). Has a dual mode of action: as a transcription factor that binds to glucocorticoid response elements (GRE), both for nuclear and mitochondrial DNA, and as a modulator of other transcription factors. Affects inflammatory responses, cellular proliferation and differentiation in target tissues. Involved in chromatin remodeling (PubMed:9590696). Plays a role in rapid mRNA degradation by binding to the 5' UTR of target mRNAs and interacting with PNRC2 in a ligand-dependent manner which recruits the RNA helicase UPF1 and the mRNA-decapping enzyme DCP1A, leading to RNA decay (PubMed:25775514). Could act as a coactivator for STAT5-dependent transcription upon growth hormone (GH) stimulation and could reveal an essential role of hepatic GR in the control of body growth. UniProt
Pathway Maps
      ESCHER  BiGG
Subunit Structure
Heteromultimeric cytoplasmic complex with HSP90AA1, HSPA1A/HSPA1B, and FKBP5 or another immunophilin such as PPID, STIP1, or the immunophilin homolog PPP5C (PubMed:21730050). Upon ligand binding FKBP5 dissociates from the complex and FKBP4 takes its place, thereby linking the complex to dynein and mediating transport to the nucleus, where the complex dissociates (By similarity). Probably forms a complex composed of chaperones HSP90 and HSP70, co-chaperones CDC37, PPP5C, TSC1 and client protein TSC2, CDK4, AKT, RAF1 and NR3C1; this complex does not contain co-chaperones STIP1/HOP and PTGES3/p23 (PubMed:29127155). Directly interacts with UNC45A (PubMed:16478993). Binds to DNA as a homodimer, and as heterodimer with NR3C2 or the retinoid X receptor. Binds STAT5A and STAT5B homodimers and heterodimers (By similarity). Interacts with NRIP1, POU2F1, POU2F2 and TRIM28 (By similarity). Interacts with several coactivator complexes, including the SMARCA4 complex, CREBBP/EP300, TADA2L (Ada complex) and p160 coactivators such as NCOA2 and NCOA6 (PubMed:10866662, PubMed:12151000, PubMed:12686538, PubMed:9154805, PubMed:9590696). Interaction with BAG1 inhibits transactivation (PubMed:10477749). Interacts with HEXIM1, PELP1 and TGFB1I1 (PubMed:12415108, PubMed:15211577, PubMed:15941832). Interacts with NCOA1 (PubMed:9590696). Interacts with NCOA3, SMARCA4, SMARCC1, SMARCD1, and SMARCE1 (By similarity). Interacts with CLOCK, CRY1 and CRY2 in a ligand-dependent fashion (PubMed:19141540, PubMed:21980503, PubMed:22170608). Interacts with CIART (By similarity). Interacts with RWDD3 (By similarity). Interacts with UBE2I/UBC9 and this interaction is enhanced in the presence of RWDD3 (By similarity). Interacts with GRIP1 (PubMed:15769988, PubMed:17635946). Interacts with NR4A3 (via nuclear receptor DNA-binding domain), represses transcription activity of NR4A3 on the POMC promoter Nur response element (NurRE) (PubMed:15591535). Directly interacts with PNRC2 to attract and form a complex with UPF1 and DCP1A; the interaction leads to rapid mRNA degradation (PubMed:25775514). Interacts with GSK3B (PubMed:18838540). Interacts with FNIP1 and FNIP2 (PubMed:27353360). Interacts (via C-terminus) with HNRNPU (via C-terminus) (PubMed:9353307). UniProt
Composed of three domains: a modulating N-terminal domain, a DNA-binding domain and a C-terminal ligand-binding domain (PubMed:3841189). The ligand-binding domain is required for correct chromosome segregation during mitosis although ligand binding is not required (PubMed:25847991). UniProt
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from the SWISS-MODEL Repository  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.