High affinity nerve growth factor receptor - P04629 (NTRK1_HUMAN)


Protein Feature View of PDB entries mapped to a UniProtKB sequence  

Receptor tyrosine kinase involved in the development and the maturation of the central and peripheral nervous systems through regulation of proliferation, differentiation and survival of sympathetic and nervous neurons. High affinity receptor for NGF which is its primary ligand (PubMed:1850821, PubMed:1849459, PubMed:1281417, PubMed:8325889, PubMed:15488758, PubMed:22649032, PubMed:17196528, PubMed:27445338). Can also bind and be activated by NTF3/neurotrophin-3. However, NTF3 only supports axonal extension through NTRK1 but has no effect on neuron survival (By similarity). Upon dimeric NGF ligand-binding, undergoes homodimerization, autophosphorylation and activation (PubMed:1281417). Recruits, phosphorylates and/or activates several downstream effectors including SHC1, FRS2, SH2B1, SH2B2 and PLCG1 that regulate distinct overlapping signaling cascades driving cell survival and differentiation. Through SHC1 and FRS2 activates a GRB2-Ras-MAPK cascade that regulates cell differentiation and survival. Through PLCG1 controls NF-Kappa-B activation and the transcription of genes involved in cell survival. Through SHC1 and SH2B1 controls a Ras-PI3 kinase-AKT1 signaling cascade that is also regulating survival. In absence of ligand and activation, may promote cell death, making the survival of neurons dependent on trophic factors. UniProt
Catalytic Activity
ATP + L-tyrosyl-[protein] = ADP + H+ + O-phospho-L-tyrosyl-[protein] UniProt
Pathway Maps
      ESCHER  BiGG
Subunit Structure
Exists in a dynamic equilibrium between monomeric (low affinity) and dimeric (high affinity) structures. Homodimerization is induced by binding of a NGF dimer (PubMed:1281417, PubMed:10490030, PubMed:17196528). Interacts with SQSTM1; bridges NTRK1 to NGFR (PubMed:11244088). Forms a ternary complex with NGFR and KIDINS220; this complex is affected by the expression levels of KIDINS220 and an increase in KIDINS220 expression leads to a decreased association of NGFR and NTRK1 (By similarity). Interacts with SH2D1A; regulates NTRK1 (By similarity). Interacts (phosphorylated upon activation by NGF) with SHC1; mediates SHC1 phosphorylation and activation (PubMed:8155326, PubMed:15488758). Interacts (phosphorylated upon activation by NGF) with PLCG1; mediates PLCG1 phosphorylation and activation (PubMed:7510697, PubMed:15488758). Interacts (phosphorylated) with SH2B1 and SH2B2 (By similarity). Interacts with GRB2 (PubMed:15488758). Interacts with PIK3R1 (PubMed:15488758). Interacts with FRS2 (PubMed:15488758). Interacts with SORT1; may regulate NTRK1 anterograde axonal transport (PubMed:21102451). Interacts with RAB7A (By similarity). Found in a complex, at least composed of KIDINS220, MAGI2, NTRK1 and RAPGEF2; the complex is mainly formed at late endosomes in a nerve growth factor (NGF)-dependent manner (By similarity). Interacts with RAPGEF2; the interaction is strengthened after NGF stimulation (By similarity). Interacts with PTPRS (By similarity). Interacts with USP36; USP36 does not deubiquitinate NTRK1 (PubMed:27445338). Interacts with GGA3 (PubMed:26446845). UniProt
The extracellular domain mediates interaction with NGFR. UniProt
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from the SWISS-MODEL Repository  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by flaticon.com under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.