Cytoplasmic protein NCK1 - P16333 (NCK1_HUMAN)


Protein Feature View of PDB entries mapped to a UniProtKB sequence  

Adapter protein which associates with tyrosine-phosphorylated growth factor receptors, such as KDR and PDGFRB, or their cellular substrates. Maintains low levels of EIF2S1 phosphorylation by promoting its dephosphorylation by PP1. Plays a role in the DNA damage response, not in the detection of the damage by ATM/ATR, but for efficient activation of downstream effectors, such as that of CHEK2. Plays a role in ELK1-dependent transcriptional activation in response to activated Ras signaling. Modulates the activation of EIF2AK2/PKR by dsRNA. May play a role in cell adhesion and migration through interaction with ephrin receptors. UniProt
Pathway Maps
      ESCHER  BiGG
Subunit Structure
Interacts (via SH2 domain and SH3 domain 2) with EGFR. Interacts with PAK1 and SOS1. Interacts (via SH3 domains) with PKN2. Associates with BLNK, PLCG1, VAV1 and NCK1 in a B-cell antigen receptor-dependent fashion. Interacts with SOCS7. This interaction is required for nuclear import. Part of a complex containing PPP1R15B, PP1 and NCK1. Interacts with RALGPS1. Interacts with CAV2 (tyrosine phosphorylated form). Interacts with ADAM15. Interacts with FASLG. Directly interacts with RASA1. Interacts with isoform 4 of MINK1. Interacts with FLT1 (tyrosine phosphorylated). Interacts with KDR (tyrosine phosphorylated). Interacts (via SH2 domain) with EPHB1; activates the JUN cascade to regulate cell adhesion. Interacts with EPHA2. Interacts (via SH2 domain) with PDGFRB (tyrosine phosphorylated). Interacts with the inactive form of EIF2AK2/PKR. UniProt
Only the first and third SH3 domains seem to be involved in RASA1-binding; the second SH3 domain and the SH2 domains do not seem to be involved. UniProt
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from the SWISS-MODEL Repository  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.