Breast cancer type 1 susceptibility protein - P38398 (BRCA1_HUMAN)


Protein Feature View of PDB entries mapped to a UniProtKB sequence  

E3 ubiquitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage. It is unclear whether it also mediates the formation of other types of polyubiquitin chains. The E3 ubiquitin-protein ligase activity is required for its tumor suppressor function. The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability. Regulates centrosomal microtubule nucleation. Required for normal cell cycle progression from G2 to mitosis. Required for appropriate cell cycle arrests after ionizing irradiation in both the S-phase and the G2 phase of the cell cycle. Involved in transcriptional regulation of P21 in response to DNA damage. Required for FANCD2 targeting to sites of DNA damage. May function as a transcriptional regulator. Inhibits lipid synthesis by binding to inactive phosphorylated ACACA and preventing its dephosphorylation. Contributes to homologous recombination repair (HRR) via its direct interaction with PALB2, fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks. Component of the BRCA1-RBBP8 complex which regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage via BRCA1-mediated ubiquitination of RBBP8. Acts as a transcriptional activator (PubMed:20160719). UniProt
Catalytic Activity
S-ubiquitinyl-[E2 ubiquitin-conjugating enzyme]-L-cysteine + [acceptor protein]-L-lysine = [E2 ubiquitin-conjugating enzyme]-L-cysteine + N6-ubiquitinyl-[acceptor protein]-L-lysine. UniProt
Pathway Maps
      ESCHER  BiGG
Subunit Structure
Heterodimer with BARD1 (PubMed:11573085, PubMed:12890688, PubMed:14976165). Part of the BRCA1-associated genome surveillance complex (BASC), which contains BRCA1, MSH2, MSH6, MLH1, ATM, BLM, PMS2 and the MRE11-RAD50-NBN protein (MRN) complex (PubMed:10783165). This association could be a dynamic process changing throughout the cell cycle and within subnuclear domains (PubMed:10783165). Component of the BRCA1-A complex, at least composed of BRCA1, BARD1, UIMC1/RAP80, ABRAXAS1, BRCC3/BRCC36, BABAM2 and BABAM1/NBA1 (PubMed:19261746, PubMed:19261748, PubMed:19261749, PubMed:20351172). Interacts (via the BRCT domains) with ABRAXAS1 (phosphorylated form); this is important for recruitment to sites of DNA damage (PubMed:17525340, PubMed:17643121, PubMed:17643122, PubMed:24316840, PubMed:26778126, PubMed:23269703). Can form a heterotetramer with two molecules of ABRAXAS1 (phosphorylated form) (PubMed:26778126). Component of the BRCA1-RBBP8 complex (PubMed:16101277). Interacts (via the BRCT domains) with RBBP8 ('Ser-327' phosphorylated form); the interaction ubiquitinates RBBP8, regulates CHEK1 activation, and involves RBBP8 in BRCA1-dependent G2/M checkpoint control on DNA damage (PubMed:16818604, PubMed:9811458). Associates with RNA polymerase II holoenzyme (PubMed:9662397). Interacts with SMC1A, NELFB, DCLRE1C, CLSPN (PubMed:11877377, PubMed:15096610, PubMed:15456891, PubMed:11739404). Interacts with CHEK1, CHEK2, BAP1, BRCC3, AURKA, UBXN1 and PCLAF (PubMed:10724175, PubMed:11836499, PubMed:14636569, PubMed:14990569, PubMed:20351172, PubMed:21673012). Interacts (via BRCT domains) with BRIP1 (phosphorylated form) (PubMed:11301010, PubMed:15133502, PubMed:21473589). Interacts with FANCD2 (ubiquitinated form) (PubMed:11239454). Interacts with H2AX (phosphorylated on 'Ser-140') (PubMed:12419185). Interacts (via the BRCT domains) with ACACA (phosphorylated form); the interaction prevents dephosphorylation of ACACA (PubMed:12360400, PubMed:16326698, PubMed:16698035, PubMed:18452305). Part of a BRCA complex containing BRCA1, BRCA2 and PALB2 (PubMed:19369211). Interacts directly with PALB2; the interaction is essential for its function in HRR (PubMed:19369211, PubMed:28319063). Interacts directly with BRCA2; the interaction occurs only in the presence of PALB2 which serves as the bridging protein (PubMed:19369211). Interacts (via the BRCT domains) with LMO4; the interaction represses the transcriptional activity of BRCA1 (PubMed:11751867). Interacts (via the BRCT domains) with CCAR2 (via N-terminus); the interaction represses the transcriptional activator activity of BRCA1 (PubMed:20160719). Interacts with EXD2 (PubMed:26807646). Interacts (via C-terminus) with DHX9; this interaction is direct and links BRCA1 to the RNA polymerase II holoenzyme (PubMed:9662397). UniProt
The RING-type zinc finger domain interacts with BAP1. UniProt
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from the SWISS-MODEL Repository  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.