Histone deacetylase 1 - Q13547 (HDAC1_HUMAN)


Protein Feature View of PDB entries mapped to a UniProtKB sequence  

Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Deacetylates SP proteins, SP1 and SP3, and regulates their function. Component of the BRG1-RB1-HDAC1 complex, which negatively regulates the CREST-mediated transcription in resting neurons. Upon calcium stimulation, HDAC1 is released from the complex and CREBBP is recruited, which facilitates transcriptional activation. Deacetylates TSHZ3 and regulates its transcriptional repressor activity. Deacetylates 'Lys-310' in RELA and thereby inhibits the transcriptional activity of NF-kappa-B. Deacetylates NR1D2 and abrogates the effect of KAT5-mediated relieving of NR1D2 transcription repression activity. Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development. Involved in CIART-mediated transcriptional repression of the circadian transcriptional activator: CLOCK-ARNTL/BMAL1 heterodimer. Required for the transcriptional repression of circadian target genes, such as PER1, mediated by the large PER complex or CRY1 through histone deacetylation. UniProt
Catalytic Activity
H2O + N6-acetyl-L-lysyl-[histone] = acetate + L-lysyl-[histone] UniProt
Pathway Maps
      ESCHER  BiGG
Subunit Structure
Part of the core histone deacetylase (HDAC) complex composed of HDAC1, HDAC2, RBBP4 and RBBP7. The core complex associates with MTA2, MBD2, MBD3, MTA1L1, CHD3 and CHD4 to form the nucleosome remodeling and histone deacetylation (NuRD) complex, or with SIN3, SAP18 and SAP30 to form the SIN3 HDAC complex. Component of a BHC histone deacetylase complex that contains HDAC1, HDAC2, HMG20B/BRAF35, KDM1A, RCOR1/CoREST and PHF21A/BHC80. The BHC complex may also contain ZMYM2, ZNF217, ZMYM3, GSE1 and GTF2I. Component of a mSin3A corepressor complex that contains SIN3A, SAP130, SUDS3/SAP45, ARID4B/SAP180, HDAC1 and HDAC2. Found in a trimeric complex with APBB1 and TSHZ3; the interaction between HDAC1 and APBB1 is mediated by TSHZ3. Component of a RCOR/GFI/KDM1A/HDAC complex. Part of a complex composed of TRIM28, HDAC1, HDAC2 and EHMT2. Part of a complex containing at least CDYL, MIER1, MIER2, HDAC1 and HDAC2. The large PER complex involved in the histone deacetylation is composed of at least HDAC1, PER2, SFPQ and SIN3A. Associates with the 9-1-1 complex; interacts with HUS1. Found in a complex with DNMT3A and HDAC7. Interacts with the non-histone region of MACROH2A1. Interacts with TRIM28; the interaction recruits HDAC1 to E2F1 and inhibits its acetylation. Interacts with SP1; the interaction deacetylates SP1 and regulates its transcriptional activity. Interacts with SP3; the interaction deacetylates SP3 and regulates its transcriptional activity. In vitro, C(18) ceramides increase this interaction and the subsequent SP3 deacetylation and SP3-mediated repression of the TERT promoter. Interacts with TSHZ3 (via N-terminus); the interaction is direct. Interacts with APEX1; the interaction is not dependent on the acetylated status of APEX1. Interacts with C10orf90/FATS (via its N-terminal); the interaction prevents binding of HDAC1 to CDKN1A/p21 and facilitates the acetylation and stabilization of CDKN1A/p21. Interacts with CDKN1A/p21. Interacts with CDK5 complexed to CDK5R1 (p25). Interacts directly with GFI1 and GFI1B. Interacts with NR1D2 (via C-terminus). Interacts with TSC22D3 isoform 1; this interaction affects HDAC1 activity on MYOG promoter and thus inhibits MYOD1 transcriptional activity. Interacts with BAZ2A/TIP5, BANP, BCL6, BCOR, BHLHE40/DEC1, BRMS1, BRMS1L, CBFA2T3, CHFR, CIART, CRY1, DAXX, DDIT3/CHOP, DDX5, DNMT1, E4F1, EP300, HCFC1, HDAC9, INSM1, NFE4, NR4A2/NURR1, MIER1, KDM4A, KDM5B, KLF1, MINT, NRIP1, PCAF, PHB2, PRDM6, PRDM16, RB1, RERE, SAMSN1, SAP30L, SETDB1, SMAD3, SMARCA4/BRG1, SMYD2, SUV39H1, TGIF, TGIF2, TRAF6, UHRF1, UHRF2, ZMYND15, ZNF431 and ZNF541. Interacts with KDM5A (By similarity). Interacts with DNTTIP1 (PubMed:25653165). Identified in a histone deacetylase complex that contains DNTTIP1, HDAC1 and MIDEAS; this complex assembles into a tetramer that contains four copies of each protein chain (PubMed:25653165). Interacts with CCAR2 (PubMed:21030595). Interacts with PPHLN1 (PubMed:17963697). Found in a complex with YY1, SIN3A and GON4L (By similarity). Interacts with CHD4 (PubMed:27616479). Found in a complex composed of at least SINHCAF, SIN3A, HDAC1, SAP30, RBBP4, OGT and TET1. Interacts with SIN3A (By similarity). Interacts with DHX36; this interaction occurs in a RNA-dependent manner (PubMed:18279852). Interacts with ZBTB7A (PubMed:25514493). Interacts with SMAD4; positively regulated by ZBTB7A (PubMed:25514493). Interacts with PACS2 (PubMed:29656858). Forms a complex comprising APPL1, RUVBL2, APPL2, CTNNB1 and HDAC2 (PubMed:19433865). Interacts with ZNF638 (PubMed:30487602). Interacts with SPHK2 (PubMed:19729656). Interacts with ERCC6 (PubMed:26030138). UniProt
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from the SWISS-MODEL Repository  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by flaticon.com under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.