ATP-dependent DNA/RNA helicase DHX36 - Q9H2U1 (DHX36_HUMAN)


Protein Feature View of PDB entries mapped to a UniProtKB sequence  

Multifunctional ATP-dependent helicase that unwinds G-quadruplex (G4) structures (PubMed:16150737, PubMed:18854321, PubMed:20472641, PubMed:21586581). Plays a role in many biological processes such as genomic integrity, gene expression regulations and as a sensor to initiate antiviral responses (PubMed:14731398, PubMed:18279852, PubMed:21993297, PubMed:22238380, PubMed:25579584). G4 structures correspond to helical structures containing guanine tetrads (By similarity). Binds with high affinity to and unwinds G4 structures that are formed in nucleic acids (G4-ADN and G4-RNA) (PubMed:16150737, PubMed:18842585, PubMed:20472641, PubMed:21586581, PubMed:24369427, PubMed:26195789). Plays a role in genomic integrity (PubMed:22238380). Converts the G4-RNA structure present in telomerase RNA template component (TREC) into a double-stranded RNA to promote P1 helix formation that acts as a template boundary ensuring accurate reverse transcription (PubMed:20472641, PubMed:21149580, PubMed:21846770, PubMed:22238380, PubMed:24151078, PubMed:25579584). Plays a role in transcriptional regulation (PubMed:21586581, PubMed:21993297). Resolves G4-DNA structures in promoters of genes, such as YY1, KIT/c-kit and ALPL and positively regulates their expression (PubMed:21993297). Plays a role in post-transcriptional regulation (PubMed:27940037). Unwinds a G4-RNA structure located in the 3'-UTR polyadenylation site of the pre-mRNA TP53 and stimulates TP53 pre-mRNA 3'-end processing in response to ultraviolet (UV)-induced DNA damage (PubMed:27940037). Binds to the precursor-microRNA-134 (pre-miR-134) terminal loop and regulates its transport into the synapto-dendritic compartment (By similarity). Involved in the pre-miR-134-dependent inhibition of target gene expression and the control of dendritic spine size (By similarity). Plays a role in the regulation of cytoplasmic mRNA translation and mRNA stability (PubMed:24369427, PubMed:26489465). Binds to both G4-RNA structures and alternative non-quadruplex-forming sequence within the 3'-UTR of the PITX1 mRNA regulating negatively PITX1 protein expression (PubMed:24369427). Binds to both G4-RNA structure in the 5'-UTR and AU-rich elements (AREs) localized in the 3'-UTR of NKX2-5 mRNA to either stimulate protein translation or induce mRNA decay in an ELAVL1-dependent manner, respectively (PubMed:26489465). Binds also to ARE sequences present in several mRNAs mediating exosome-mediated 3'-5' mRNA degradation (PubMed:14731398, PubMed:18279852). Involved in cytoplasmic urokinase-type plasminogen activator (uPA) mRNA decay (PubMed:14731398). Component of a multi-helicase-TICAM1 complex that acts as a cytoplasmic sensor of viral double-stranded RNA (dsRNA) and plays a role in the activation of a cascade of antiviral responses including the induction of proinflammatory cytokines via the adapter molecule TICAM1 (By similarity). Required for early embryonic development and hematopoiesis. Involved in the regulation of cardioblast differentiation and proliferation during heart development. Involved in spermatogonia differentiation. May play a role in ossification (By similarity). UniProt
Catalytic Activity
ATP + H2O = ADP + H+ + phosphate UniProt
Pathway Maps
      ESCHER  BiGG
Subunit Structure
Found in a multi-helicase-TICAM1 complex at least composed of DHX36, DDX1, DDX21 and TICAM1; this complex exists in resting cells with or without dsRNA poly(I:C) ligand stimulation (By similarity). Interacts (via C-terminus) with TICAM1 (via TIR domain) (By similarity). Interacts (via C-terminus) with DDX21; this interaction serves as bridges to TICAM1 (By similarity). Interacts with TERT; this interaction is dependent on the ability of DHX36 to bind to the G-quadruplex RNA (G4-RNA) structure present in the telomerase RNA template component (TERC) (PubMed:21846770). Interacts with DKC1; this interaction is dependent on the ability of DHX36 to bind to the G4-RNA structure present in TERC (PubMed:21846770). Interacts with PARN; this interaction stimulates PARN to enhance uPA mRNA decay (PubMed:14731398). Interacts with EXOSC3; this interaction occurs in a RNase-insensitive manner (PubMed:14731398). Interacts with EXOSC10; this interaction occurs in a RNase-insensitive manner (PubMed:14731398). Interacts with ILF3; this interaction occurs in a RNA-dependent manner (PubMed:14731398). Interacts with ELAVL1; this interaction occurs in an RNA-dependent manner (PubMed:14731398, PubMed:26489465). Interacts with DDX5; this interaction occurs in a RNA-dependent manner (PubMed:18279852). Interacts with DDX17; this interaction occurs in a RNA-dependent manner (PubMed:18279852). Interacts with HDAC1; this interaction occurs in a RNA-dependent manner (PubMed:18279852). Interacts with HDAC3; this interaction occurs in a RNA-dependent manner (PubMed:18279852). Interacts with HDAC4 (By similarity). Interacts with AGO1 (PubMed:17932509). Interacts with AGO2 (PubMed:17932509). Interacts with ERCC6 (PubMed:26030138). UniProt
The DHX36-specific motif (DSM) form folds into a DNA-binding-induced alpha-helix that together with the oligonucleotide and oligosaccharide-binding-fold-like (OB-fold-like) subdomain, selectively bind to Myc-promoter G4-DNA-containing structure in an ATP-dependent manner. Upon G4-DNA-binding, DHX36 pulls on DSM in the 3'-direction, inducing rearrangement of the RecA-like 1 and 2 and the degenerate-winged-helix (WH) regions; these rearrangements are propbably responsible for the ATP-independent repetitive G4-DNA unfolding activity, one residue at a time. Upon resolving of G4-DNA into separate nucleotide strands, and ATP hydrolysis, the apoprotein of DHX36 seems incompatible with G4-DNA-binding (By similarity). The N-terminus is necessary for its recruitment to cytoplasmic stress granules (SGs) upon arsenite-induced treatment (PubMed:18854321). UniProt
The Protein Feature View requires a browser that supports SVG (Scalable Vector Graphics). Mouse over tracks and labels for more information.
Data origin/color codes
The vertical color bar on the left side indicates data provenance.
Data in green originates from UniProtKB  
Variation data (sourced from UniProt) shows non-genetic variation from the ExPASy   and dbSNP   websites.
Data in yellow originates from Pfam  , by interacting with the HMMER3 web site  
Data in purple originates from Phosphosite  .
Data in orange originates from the SCOP   (version 1.75) and SCOPe   (version 2.04) classifications.
Data in grey has been calculated using BioJava  . Protein disorder predictions are based on JRONN (Troshin, P. and Barton, G. J. unpublished), a Java implementation of RONN  
  • Red: potentially disorderd region
  • Blue: probably ordered region.
Hydropathy has been calculated using a sliding window of 15 residues and summing up scores from standard hydrophobicity tables.
  • Red: hydrophobic
  • Blue: hydrophilic.
Data in lilac represent the genomic exon structure projected onto the UniProt sequence.
Data in blue originates from PDB
  • Secstruc: Secondary structure projected from representative PDB entries onto the UniProt sequence.
Sequence Mismatches It is now possible to see information about expression tags, cloning artifacts, and many other details related to sequence mismatches.
Icons represent a number of different sequence modifications that can be observed in PDB files. For example the 'T' icon T represents expression tags that have been added to the sequence. The 'E' icon E represents an engineered mutation. However, besides these two, there are many other icons. For more information about the meaning and exact position of a sequence modification, move the cursor over the icon.
Validation Track

For more details on the Validation Track (Structure Summary Page only) see the dedicated help page.

Data in red indicates combined ranges of Homology Models from the SWISS-MODEL Repository  
The PDB to UniProt mapping is based on the data provided by the EBI SIFTS project. See also Velankar et al., Nucleic Acids Research 33, D262-265 (2005).
Organism icons generated by under CC BY. The authors are: Freepik, Icons8, OCHA, Scott de Jonge.

For more details on the Protein Feature view see the dedicated help page.