6D4O

Eubacterium eligens beta-glucuronidase bound to an amoxapine-glucuronide conjugate


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.90 Å
  • R-Value Free: 0.244 
  • R-Value Work: 0.199 
  • R-Value Observed: 0.202 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Gut Microbial beta-Glucuronidase Inhibition via Catalytic Cycle Interception.

Pellock, S.J.Creekmore, B.C.Walton, W.G.Mehta, N.Biernat, K.A.Cesmat, A.P.Ariyarathna, Y.Dunn, Z.D.Li, B.Jin, J.James, L.I.Redinbo, M.R.

(2018) ACS Cent Sci 4: 868-879

  • DOI: 10.1021/acscentsci.8b00239
  • Structures With Same Primary Citation

  • PubMed Abstract: 
  • Microbial β-glucuronidases (GUSs) cause severe gut toxicities that limit the efficacy of cancer drugs and other therapeutics. Selective inhibitors of bacterial GUS have been shown to alleviate these side effects. Using structural and chemical biology ...

    Microbial β-glucuronidases (GUSs) cause severe gut toxicities that limit the efficacy of cancer drugs and other therapeutics. Selective inhibitors of bacterial GUS have been shown to alleviate these side effects. Using structural and chemical biology, mass spectrometry, and cell-based assays, we establish that piperazine-containing GUS inhibitors intercept the glycosyl-enzyme catalytic intermediate of these retaining glycosyl hydrolases. We demonstrate that piperazine-based compounds are substrate-dependent GUS inhibitors that bind to the GUS-GlcA catalytic intermediate as a piperazine-linked glucuronide (GlcA, glucuronic acid). We confirm the GUS-dependent formation of inhibitor-glucuronide conjugates by LC-MS and show that methylated piperazine analogs display significantly reduced potencies. We further demonstrate that a range of approved piperazine- and piperidine-containing drugs from many classes, including those for the treatment of depression, infection, and cancer, function by the same mechanism, and we confirm through gene editing that these compounds selectively inhibit GUS in living bacterial cells. Together, these data reveal a unique mechanism of GUS inhibition and show that a range of therapeutics may impact GUS activities in the human gut.


    Organizational Affiliation

    Department of Chemistry, Center for Integrated Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, and Integrated Program for Biological and Genome Sciences, and Departments of Biochemistry and Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.



Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Beta-glucuronidase
A
614Lachnospira eligensMutation(s): 0 
Gene Names: uidAERS852490_00568ERS852492_02599DW858_12335DWZ79_07385
EC: 3.2.1.31
Find proteins for A0A174ZZA3 (Lachnospira eligens)
Go to UniProtKB:  A0A174ZZA3
Small Molecules
Ligands 3 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
FUV
Query on FUV

Download CCD File 
A
(5aR,9aR)-2-chloro-11-(4-beta-D-glucopyranuronosylpiperazin-1-yl)-5a,6,9,9a-tetrahydrodibenzo[b,f][1,4]oxazepine
C23 H28 Cl N3 O7
OXNRDDVCZKYHOL-IBISMJPWSA-N
 Ligand Interaction
CL
Query on CL

Download CCD File 
A
CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
 Ligand Interaction
NA
Query on NA

Download CCD File 
A
SODIUM ION
Na
FKNQFGJONOIPTF-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.90 Å
  • R-Value Free: 0.244 
  • R-Value Work: 0.199 
  • R-Value Observed: 0.202 
  • Space Group: P 64 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 179.954α = 90
b = 179.954β = 90
c = 134.941γ = 120
Software Package:
Software NamePurpose
PHENIXrefinement
XDSdata reduction
Aimlessdata scaling
PHENIXphasing

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
National Institutes of Health/National Cancer Institute (NIH/NCI)United StatesCA098468
National Institutes of Health/National Cancer Institute (NIH/NCI)United StatesCA207416

Revision History 

  • Version 1.0: 2018-07-25
    Type: Initial release
  • Version 1.1: 2018-08-22
    Changes: Data collection, Database references
  • Version 1.2: 2019-12-04
    Changes: Author supporting evidence